Naturalizando a lógica
como o conhecimento de mecanismos reforça a inferência indutiva
Resumo
Este artigo naturaliza a inferência indutiva, indicando como o conhecimento científico de mecanismos reais proporciona grandes benefícios para essa forma de inferência. Apresento a ideia de que o conhecimento sobre mecanismos contribui para a generalização, para a inferência da melhor explicação, para a inferência causal e para o raciocínio probabilístico. Partindo da ideia de que alguns A são B, uma generalização de que todos A são B se torna mais plausível quando um mecanismo conecta A e B. A inferência da melhor explicação é fortalecida quando as explicações empregam mecanismos e quando as hipóteses explicativas são elas próprias explicadas por meio de mecanismos. As inferências causais na explicação médica, no raciocínio contrafactual e por meio da analogia também se beneficiam de conexões por meio de mecanismos, os quais também auxiliam em problemas relativos à interpretação, disponibilidade e cálculo de probabilidades.
Referências
ABRAMS, Marshall. Mechanistic probability. Synthese, v. 187, p. 343–375, 2012. https://doi.org/10.1007/s11229-010-9830-3.
BECHTEL, William. Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience. New York: Routledge, 2008.
BIRD, Alexander; TOBIN, Emma. Natural Kinds. In Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2017.
BOYD, Richard. Realism, anti-foundationalism and the enthusiasm for natural kinds. Philos. Studies Int. J. Philos. Anal. Trad., v. 61, p. 127–148, 1991. https://doi.org/10.1007/BF00385837.
CONNELL, Louise; Keane, Mark T. A model of plausibility. Cogn. Sci., v. 30, p. 95–120, 2006. https://doi.org/10.1207/s15516709cog0000_53.
CRAVER, Carl F.; DARDEN, Lindley. In Search of Mechanisms: Discoveries across the Life Sciences. Chicago: University of Chicago Press, 2013.
CRAVER, Carl F.; TABERY, James. Mechanisms in Science. In: Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2015.
DAMMANN, Olaf. Etiological Explanations. Boca Raton: CRC Press, 2020.
DAMMANN, Olaf; POSTON, Ted; THAGARD, Paul. How do Medical Researchers Make Causal Inferences? In: MCCAIN, K; KAMPOURAKIS, K. (eds.). What Is Scientific Knowledge? An Introduction to Contemporary Epistemology of Science. New York: Routledge; p. 33–51, 2019.
DIMITROV, Dimiter S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol., v. 2, p. 109–122, 2004. https://doi.org/10.1038/nrmicro817.
GENTNER, Dedre. Structure-mapping: A theoretical framework for analogy. Cogn. Sci., v. 7, p. 155–170, 1983. https://doi.org/10.1207/s15516709cog0702_3.
GLENNAN, Stuart. The New Mechanical Philosophy. Oxford: Oxford University Press, 2017.
GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.
GOODMAN, Nelson. Fact, Fiction and Forecast - 2nd ed. Indianapolis: Bobbs-Merrill, 1965.
HÁJEK, Alan. Interpretations of Probability. In: Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2019.
HÁJEK, Alan; Hitchcock, Christopher. The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press, 2016.
HARMAN, Gilbert. Change in View: Principles of Reasoning. Cambridge: MIT Press/Bradford Books, 1986.
HARMAN, Gilbert. Thought. Princeton: Princeton University Press, 1973.
HEMPEL, Carl G. Aspects of Scientific Explanation. New York: The Free Press, 1965.
HENNEKENS, Charles H.; BURING, Julie E. Epidemiology in Medicine. Boston: Little, Brown and Co., 1987.
HILL, Austin B. The environment and disease: Association or causation? Proc. R. Soc. Med., v. 58, p. 295–300, 1965. DOI: https://doi.org/10.1177/0035915765058005.
HOLLAND, John H.; HOLYOAK, Keith J.; NISBETT, Richard E.; THAGARD, Paul R. Induction: Processes of Inference, Learning, and Discovery. Cambridge: MIT Press, 1986.
HOWSON, Colin; URBACH, Peter. Scientific Reasoning: The Bayesian Tradition. Lasalle: Open Court, 1989.
HUME, David. A Treatise of Human Nature. Selby-Bigge, L.A., Ed. Oxford: Clarendon Press, 1888.
JOHNSON, Samuel G.; AHN, Woo-Kyoung. Causal networks or causal Islands? The representation of mechanisms and the transitivity of causal judgment. Cogn. Sci., v. 39, p. 1468–1503, 2015. https://doi.org/10.1111/cogs.12213.
JOHNSON-LAIRD, Phillip N.; BYRNE, Ruth. M. Deduction. Hillsdale: Lawrence Erlbaum Associates, 1991.
JOSEPHSON, John R.; JOSEPHSON, Susan G. (Eds.) Abductive Inference: Computation, Philosophy, Technology. Cambridge: Cambridge University Press, 1994.
KAHNEMAN, Daniel; TVERSKY, Amos. (Eds.) Choices, Values, and Frames. Cambridge: Cambridge University Press, 2000.
KEIL, Frank; LOCKHART, Kristi. Beyond cause: The development of clockwork cognition. Curr. Dir. Psychol. Sci., v. 30, p. 167–173, 2021. https://doi.org/10.1177/0963721421992341.
KUHN, Jen. Part 2: Why does glass break? Corning Museum of Glass. 2015. Disponível em: https://blog.cmog.org/2015/06/03/part-2-why-does-glass-break/. Acesso em: 18/06/2021.
KWISTHOUT, Johan; WAREHAN, Todd; VAN ROOIJ, Iris. Bayesian intractability is not an ailment that approximation can cure. Cogn. Sci., v. 35, p. 779–784, 2011. https://doi.org/10.1111/j.1551-6709.2011.01182.x.
LAUDAN, Larry. A confutation of convergent realism. Philos. Sci., v. 48, p. 19–49, 1981. DOI: https://doi.org/10.1086/288975.
LIPTON, Peter. Inference to the Best Explanation - 2nd ed. London: Routledge, 2004.
MAGNANI, Lorenzo. Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning. Berlin: Springer, 2009.
MILL, John S. A System of Logic - 8th ed. London: Longman, 1970.
NISBETT, Richard E.; KRANTZ, David; JEPSON, Christopher; KUNDA, Ziva. The use of statistical heuristics in everyday inductive reasoning. Psychol. Rev., v. 90, p. 339–363, 1983. https://psycnet.apa.org/doi/10.1037/0033-295X.90.4.339.
OLSSON, Erik. Against Coherence: Truth, Probability, and Justification. Oxford: Oxford University Press, 2005.
PEARL, Judea. The algorithmization of counterfactuals. Ann. Math. Artif. Intell., v. 61, p. 29–39, 2011. https://doi.org/10.1007/s10472-011-9247-9.
PEARL, Judea; MACKENZIE, Dana. The Book of Why: The New Science of Cause and Effect. New York: Basic Books, 2018.
PEIRCE, Charles S. Collected Papers. Hartshorne, W.P., Burks, A., (eds.). Cambridge: Harvard University Press, 1958.
POPPER, Karl R. The propensity interpretation of probability. Br. J. Philos. Sci., v. 10, p. 25–42, 1959. https://doi.org/10.1093/bjps/X.37.25.
RANNEY, Michael A.; CLARK, Dav. Climate change conceptual change: Scientific information can transform attitudes. Top. Cogn. Sci., v. 8, p. 49–75, 2016. https://doi.org/10.1111/tops.12187.
RIPS, Lance J. The Psychology of Proof: Deductive Reasoning in Human Thinking. Cambridge: MIT Press, 1994.
THAGARD, Paul. Bots and Beasts: What Makes Machines, Animals, and People Smart? Cambridge: MIT Press, 2021.
THAGARD, Paul. Causal inference in legal decision making: Explanatory coherence vs. Bayesian networks. Appl. Artif. Intell., v. 18, p. 231–249, 2004. https://doi.org/10.1080/08839510490279861.
THAGARD, Paul. Coherence in Thought and Action. Cambridge: MIT Press, 2000.
THAGARD, Paul. Coherence, truth, and the development of scientific knowledge. Philos. Sci., v. 74, p. 28–47, 2007. https://doi.org/10.1086/520941.
THAGARD, Paul. Explanatory coherence. Behav. Brain Sci., v. 12, p. 435–467, 1989. https://doi.org/10.1017/S0140525X00057046.
THAGARD, Paul. How Scientists Explain Disease. Princeton: Princeton University Press, 1999.
THAGARD, Paul. Mechanisms of misinformation: Getting COVID-19 wrong and right. No prelo.
THAGARD, Paul. Natural Philosophy: From Social Brains to Knowledge, Reality, Morality, and Beauty. Oxford: Oxford University Press, 2019.
THAGARD, Paul. The best explanation: Criteria for theory choice. J. Philos., v. 75, p. 76–92, 1978. https://doi.org/10.2307/2025686.
THAGARD, Paul. The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change. Cambridge: MIT Press, 2012.
THAGARD, Paul; NISBETT, Richard E. Variability and confirmation. Philos. Studies, v. 42, p. 379–394, 1982. DOI: https://doi.org/10.1007/BF00714369.
VAN FRAASEN, Bas. The Scientific Image. Oxford: Clarendon Press, 1980.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 http://creativecommons.org/licenses/by/4.0/

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
