Naturalizando a lógica

como o conhecimento de mecanismos reforça a inferência indutiva

Autores

Resumo

Este artigo naturaliza a inferência indutiva, indicando como o conhecimento científico de mecanismos reais proporciona grandes benefícios para essa forma de inferência. Apresento a ideia de que o conhecimento sobre mecanismos contribui para a generalização, para a inferência da melhor explicação, para a inferência causal e para o raciocínio probabilístico. Partindo da ideia de que alguns A são B, uma generalização de que todos A são B se torna mais plausível quando um mecanismo conecta A e B. A inferência da melhor explicação é fortalecida quando as explicações empregam mecanismos e quando as hipóteses explicativas são elas próprias explicadas por meio de mecanismos. As inferências causais na explicação médica, no raciocínio contrafactual e por meio da analogia também se beneficiam de conexões por meio de mecanismos, os quais também auxiliam em problemas relativos à interpretação, disponibilidade e cálculo de probabilidades.

Biografia do Autor

Gabriel Chiarotti Sardi, Universidade de São Paulo

Doutorando em Filosofia pela Universidade de São Paulo (USP). Bolsista CAPES.

Referências

ABRAMS, Marshall. Mechanistic probability. Synthese, v. 187, p. 343–375, 2012. https://doi.org/10.1007/s11229-010-9830-3.

BECHTEL, William. Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience. New York: Routledge, 2008.

BIRD, Alexander; TOBIN, Emma. Natural Kinds. In Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2017.

BOYD, Richard. Realism, anti-foundationalism and the enthusiasm for natural kinds. Philos. Studies Int. J. Philos. Anal. Trad., v. 61, p. 127–148, 1991. https://doi.org/10.1007/BF00385837.

CONNELL, Louise; Keane, Mark T. A model of plausibility. Cogn. Sci., v. 30, p. 95–120, 2006. https://doi.org/10.1207/s15516709cog0000_53.

CRAVER, Carl F.; DARDEN, Lindley. In Search of Mechanisms: Discoveries across the Life Sciences. Chicago: University of Chicago Press, 2013.

CRAVER, Carl F.; TABERY, James. Mechanisms in Science. In: Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2015.

DAMMANN, Olaf. Etiological Explanations. Boca Raton: CRC Press, 2020.

DAMMANN, Olaf; POSTON, Ted; THAGARD, Paul. How do Medical Researchers Make Causal Inferences? In: MCCAIN, K; KAMPOURAKIS, K. (eds.). What Is Scientific Knowledge? An Introduction to Contemporary Epistemology of Science. New York: Routledge; p. 33–51, 2019.

DIMITROV, Dimiter S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol., v. 2, p. 109–122, 2004. https://doi.org/10.1038/nrmicro817.

GENTNER, Dedre. Structure-mapping: A theoretical framework for analogy. Cogn. Sci., v. 7, p. 155–170, 1983. https://doi.org/10.1207/s15516709cog0702_3.

GLENNAN, Stuart. The New Mechanical Philosophy. Oxford: Oxford University Press, 2017.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.

GOODMAN, Nelson. Fact, Fiction and Forecast - 2nd ed. Indianapolis: Bobbs-Merrill, 1965.

HÁJEK, Alan. Interpretations of Probability. In: Stanford Encyclopedia of Philosophy. Stanford: Stanford University, 2019.

HÁJEK, Alan; Hitchcock, Christopher. The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press, 2016.

HARMAN, Gilbert. Change in View: Principles of Reasoning. Cambridge: MIT Press/Bradford Books, 1986.

HARMAN, Gilbert. Thought. Princeton: Princeton University Press, 1973.

HEMPEL, Carl G. Aspects of Scientific Explanation. New York: The Free Press, 1965.

HENNEKENS, Charles H.; BURING, Julie E. Epidemiology in Medicine. Boston: Little, Brown and Co., 1987.

HILL, Austin B. The environment and disease: Association or causation? Proc. R. Soc. Med., v. 58, p. 295–300, 1965. DOI: https://doi.org/10.1177/0035915765058005.

HOLLAND, John H.; HOLYOAK, Keith J.; NISBETT, Richard E.; THAGARD, Paul R. Induction: Processes of Inference, Learning, and Discovery. Cambridge: MIT Press, 1986.

HOWSON, Colin; URBACH, Peter. Scientific Reasoning: The Bayesian Tradition. Lasalle: Open Court, 1989.

HUME, David. A Treatise of Human Nature. Selby-Bigge, L.A., Ed. Oxford: Clarendon Press, 1888.

JOHNSON, Samuel G.; AHN, Woo-Kyoung. Causal networks or causal Islands? The representation of mechanisms and the transitivity of causal judgment. Cogn. Sci., v. 39, p. 1468–1503, 2015. https://doi.org/10.1111/cogs.12213.

JOHNSON-LAIRD, Phillip N.; BYRNE, Ruth. M. Deduction. Hillsdale: Lawrence Erlbaum Associates, 1991.

JOSEPHSON, John R.; JOSEPHSON, Susan G. (Eds.) Abductive Inference: Computation, Philosophy, Technology. Cambridge: Cambridge University Press, 1994.

KAHNEMAN, Daniel; TVERSKY, Amos. (Eds.) Choices, Values, and Frames. Cambridge: Cambridge University Press, 2000.

KEIL, Frank; LOCKHART, Kristi. Beyond cause: The development of clockwork cognition. Curr. Dir. Psychol. Sci., v. 30, p. 167–173, 2021. https://doi.org/10.1177/0963721421992341.

KUHN, Jen. Part 2: Why does glass break? Corning Museum of Glass. 2015. Disponível em: https://blog.cmog.org/2015/06/03/part-2-why-does-glass-break/. Acesso em: 18/06/2021.

KWISTHOUT, Johan; WAREHAN, Todd; VAN ROOIJ, Iris. Bayesian intractability is not an ailment that approximation can cure. Cogn. Sci., v. 35, p. 779–784, 2011. https://doi.org/10.1111/j.1551-6709.2011.01182.x.

LAUDAN, Larry. A confutation of convergent realism. Philos. Sci., v. 48, p. 19–49, 1981. DOI: https://doi.org/10.1086/288975.

LIPTON, Peter. Inference to the Best Explanation - 2nd ed. London: Routledge, 2004.

MAGNANI, Lorenzo. Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning. Berlin: Springer, 2009.

MILL, John S. A System of Logic - 8th ed. London: Longman, 1970.

NISBETT, Richard E.; KRANTZ, David; JEPSON, Christopher; KUNDA, Ziva. The use of statistical heuristics in everyday inductive reasoning. Psychol. Rev., v. 90, p. 339–363, 1983. https://psycnet.apa.org/doi/10.1037/0033-295X.90.4.339.

OLSSON, Erik. Against Coherence: Truth, Probability, and Justification. Oxford: Oxford University Press, 2005.

PEARL, Judea. The algorithmization of counterfactuals. Ann. Math. Artif. Intell., v. 61, p. 29–39, 2011. https://doi.org/10.1007/s10472-011-9247-9.

PEARL, Judea; MACKENZIE, Dana. The Book of Why: The New Science of Cause and Effect. New York: Basic Books, 2018.

PEIRCE, Charles S. Collected Papers. Hartshorne, W.P., Burks, A., (eds.). Cambridge: Harvard University Press, 1958.

POPPER, Karl R. The propensity interpretation of probability. Br. J. Philos. Sci., v. 10, p. 25–42, 1959. https://doi.org/10.1093/bjps/X.37.25.

RANNEY, Michael A.; CLARK, Dav. Climate change conceptual change: Scientific information can transform attitudes. Top. Cogn. Sci., v. 8, p. 49–75, 2016. https://doi.org/10.1111/tops.12187.

RIPS, Lance J. The Psychology of Proof: Deductive Reasoning in Human Thinking. Cambridge: MIT Press, 1994.

THAGARD, Paul. Bots and Beasts: What Makes Machines, Animals, and People Smart? Cambridge: MIT Press, 2021.

THAGARD, Paul. Causal inference in legal decision making: Explanatory coherence vs. Bayesian networks. Appl. Artif. Intell., v. 18, p. 231–249, 2004. https://doi.org/10.1080/08839510490279861.

THAGARD, Paul. Coherence in Thought and Action. Cambridge: MIT Press, 2000.

THAGARD, Paul. Coherence, truth, and the development of scientific knowledge. Philos. Sci., v. 74, p. 28–47, 2007. https://doi.org/10.1086/520941.

THAGARD, Paul. Explanatory coherence. Behav. Brain Sci., v. 12, p. 435–467, 1989. https://doi.org/10.1017/S0140525X00057046.

THAGARD, Paul. How Scientists Explain Disease. Princeton: Princeton University Press, 1999.

THAGARD, Paul. Mechanisms of misinformation: Getting COVID-19 wrong and right. No prelo.

THAGARD, Paul. Natural Philosophy: From Social Brains to Knowledge, Reality, Morality, and Beauty. Oxford: Oxford University Press, 2019.

THAGARD, Paul. The best explanation: Criteria for theory choice. J. Philos., v. 75, p. 76–92, 1978. https://doi.org/10.2307/2025686.

THAGARD, Paul. The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change. Cambridge: MIT Press, 2012.

THAGARD, Paul; NISBETT, Richard E. Variability and confirmation. Philos. Studies, v. 42, p. 379–394, 1982. DOI: https://doi.org/10.1007/BF00714369.

VAN FRAASEN, Bas. The Scientific Image. Oxford: Clarendon Press, 1980.

Downloads

Publicado

2025-09-18