

Sistemas de microfone remoto como tecnologia assistiva para crianças com transtorno do espectro autista: o que dizem as evidências?

Remote microphone systems as assistive technology for children with autism spectrum disorder: what does the evidence say?

Sistemas de micrófono remoto como tecnología asistiva para niños con trastorno del espectro autista: ¿qué dice la evidencia?

Anna Carolyna de Jesus Moraes¹ D

Tatiane Franciele de Almeida¹ D

Vanessa Luisa Destro Fidêncio¹ D

Resumo

Introdução: O Sistema de Microfone Remoto (SMR) é uma tecnologia assistiva que visa facilitar a percepção auditiva da fala. Crianças ouvintes diagnosticadas com transtorno do espectro autista (TEA) podem apresentar déficits auditivos, hiper responsividade auditiva ou ambos, e também podem se beneficiar do SMR. Objetivo: avaliar os beneficios do uso do SMR em crianças ouvintes diagnosticadas com TEA. Métodos: trata-se de revisão integrativa da literatura. A busca foi realizada em diferentes bases de dados e foram incluídos estudos que avaliaram o uso do SMR em crianças ouvintes diagnosticadas com TEA. Resultados: seis estudos foram incluídos. Quatro estudos incluíram também a avaliação com professores e/ou pais. Os estudos demonstraram uma melhora na percepção auditiva da fala em ambientes ruidosos com o uso do SMR, além de uma redução do estresse relacionado à audição. Professores relataram melhorias na compreensão auditiva, no comportamento em sala de aula e na atenção. Pais perceberam melhor desempenho em diferentes ambientes e à distância. Discussão: O SMR pode favorecer a comunicação

Contribuição dos autores:

ACJM, TFA: contribuíram com a metodologia, coleta de dados, análise dos dados e escrita do artigo.

VLDF: orientadora científica do trabalho, contribuindo com a concepção do estudo, metodologia, análise dos dados, escrita do artigo e revisão crítica da versão final.

Email para correspondência: vanessa.destrof@gmail.com

Recebido: 03/12/2024 Aprovado: 06/03/2025

¹ Universidade Tuiuti do Paraná - UTP, Curitiba, PR, Brasil.

e interação social de crianças com TEA. Pode haver rejeição ao uso dos receptores pessoais por hiper responsividade tátil. **Conclusão:** O uso do SMR em crianças ouvintes diagnosticadas com TEA pode oferecer múltiplos benefícios, como uma melhor percepção da fala em ambientes ruidosos, redução do estresse em situações complexas de escuta, aprimoramento na percepção da prosódia emocional, aumento da atenção e da memória auditiva, além da diminuição de comportamentos disruptivos. No entanto, os benefícios variam entre as crianças, não sendo possível garanti-los em toda a população com TEA.

Palavras-chave: Crianca: Transtorno do espectro autista: Percepção da fala: Tecnologia assistiva.

Abstract

Introduction: The Remote Microphone System (RMS) is an assistive technology designed to facilitate speech perception. Hearing children diagnosed with Autism Spectrum Disorder (ASD) may present auditory deficits, auditory hyper-responsiveness, or both, and may also benefit from RMS. Objective: To assess the benefits of using RMS in hearing children diagnosed with ASD. Methods: This study is an integrative literature review. A search was conducted in different databases, including studies that evaluated the use of RMS in hearing children diagnosed with ASD. **Results:** Six studies were included. Four of them also assessed teachers and/or parents. The studies demonstrated an improvement in speech perception in noisy environments with the use of RMS, as well as a reduction in auditory-related stress. Teachers reported improvements in auditory comprehension, classroom behavior, and attention. Parents observed better performance in different environments and at a distance. **Discussion:** RMS can enhance communication and social interaction in children with ASD. However, some children may reject the use of personal receivers due to tactile hyper-responsiveness. Conclusion: The use of RMS in hearing children diagnosed with ASD may offer multiple benefits, such as improved speech perception in noisy environments, reduced stress in complex listening situations, enhanced perception of emotional prosody, increased attention and auditory memory, and a decrease in disruptive behaviors. However, the benefits vary among children, and it is not possible to guarantee them for the entire ASD population.

Keywords: Child; Autism spectrum disorder; Speech perception; Self-help devices.

Resúmen

Introducción: El Sistema de Micrófono Remoto (SMR) es una tecnología asistiva diseñada para facilitar la percepción del habla. Los niños oyentes diagnosticados con Trastorno del Espectro Autista (TEA) pueden presentar déficits auditivos, hiperresponsividad auditiva o ambos, y también pueden beneficiarse del SMR. Objetivo: Evaluar los beneficios del uso del SMR en niños oyentes diagnosticados con TEA. **Métodos:** Se trata de una revisión integrativa de la literatura. Se realizó una búsqueda en diferentes bases de datos y se incluyeron estudios que evaluaron el uso del SMR en niños oyentes diagnosticados con TEA. Resultados: Se incluyeron seis estudios. Cuatro de ellos también evaluaron a profesores y/o padres. Los estudios demostraron una mejora en la percepción del habla en entornos ruidosos con el uso del SMR, además de una reducción del estrés relacionado con la audición. Los profesores informaron mejoras en la comprensión auditiva, el comportamiento en el aula y la atención. Los padres percibieron un mejor desempeño en diferentes entornos y a distancia. Discusión: El SMR puede favorecer la comunicación y la interacción social de los niños con TEA. Sin embargo, algunos niños pueden rechazar el uso de los receptores personales debido a la hiperresponsividad táctil. Conclusión: El uso del SMR en niños oyentes diagnosticados con TEA puede ofrecer múltiples beneficios, como una mejor percepción del habla en entornos ruidosos, reducción del estrés en situaciones auditivas complejas, mejora en la percepción de la prosodia emocional, aumento de la atención y la memoria auditiva, así como una disminución de los comportamientos disruptivos. No obstante, los beneficios varían entre los niños y no se pueden garantizar en toda la población con TEA.

Palabras clave: Niño; Transtorno del espectro autista; Percepción del habla; Dispositivos de autoayuda.

Introdução

O Sistema de Microfone Remoto (SMR) é uma tecnologia assistiva que visa facilitar a percepção auditiva da fala em ambientes com ruído, reverberação e/ou distância entre o ouvinte e a fonte sonora. O SMR engloba diferentes dispositivos e inclui também a tecnologia anterior, o Sistema de Frequência Modulada (FM)¹. Consiste, basicamente, em dois componentes: o transmissor e o receptor. O transmissor possui um microfone, que capta a voz do falante e envia esse sinal, via modulação digital (DM) ou via frequência modulada (FM) para o receptor, melhorando a relação sinal/ruído (S/R)² e contribuindo para diminuir o esforço de escuta em situações adversas³.

O SMR é amplamente utilizado por crianças com deficiência auditiva, principalmente em sala de aula⁴. Nessa situação, o uso do dispositivo pode melhorar significativamente a relação S/R, simulando uma situação em que o professor está a apenas 30 cm de distância do aluno, independente do seu posicionamento na sala⁵. No SMR do tipo pessoal, o receptor é conectado ao dispositivo eletrônico auxiliar de audição (DEAA) utilizado pela criança, seja ele um dispositivo eletrônico de amplificação sonora (DEAS), implante coclear (IC) ou prótese auditiva ancorada ao osso (PAAO). Já no SMR em campo-livre, o receptor é uma caixa acústica posicionada em um ponto estratégico.

Atualmente, sabe-se que a indicação do uso do SMR não se restringe ao ambiente escolar. Estudos demonstraram beneficios do uso dessa tecnologia por crianças com deficiência auditiva também no ambiente domiciliar^{6,7}. Além disso, há o benefício para diferentes populações. Shiels, Tomlin e Rance⁸ avaliaram 28 crianças com limiares auditivos tonais normais, que apresentavam dificuldades auditivas, e observaram melhorias significativas na percepção auditiva da fala e na atenção dos participantes quando utilizaram o SMR. Benítez-Barrera et al⁹ demonstraram mudanças de plasticidade na representação neural do som em crianças em idade escolar após treinamento com uso do SMR, devido à otimização do sinal transmitido. Evidências também indicam o SMR como a tecnologia mais eficaz para melhorar a inteligibilidade da fala em casos de Transtorno do Processamento Auditivo Central (TPAC), com possíveis mudanças na neuroplasticidade a longo prazo¹⁰.

Existe um dispositivo de SMR específico para indivíduos com limiares auditivos tonais normais. Trata-se do transmissor *Roger Inspiro*, da marca Phonak®, que transmite o som para os receptores *Roger Focus*, projetados especificamente para essa população, a fim de fornecerem um volume seguro e confortável para os usuários. Os receptores pessoais apresentam tubo fino e são adaptados com oliva aberta. Ressalta-se que é fundamental realizar as medidas de verificação na adaptação¹¹. Anteriormente ao modelo Roger, a Phonak® disponibilizava no mercado o transmissor Phonak® Inspiro com os receptores iSense.

Por também poder ser indicado para crianças sem alterações nos limiares auditivos tonais, outra população que pode se beneficiar do uso do SMR é a de crianças com Transtorno do Espectro Autista (TEA)¹¹. Crianças com TEA podem apresentar hiper ou hiporresponsividade aos estímulos sensoriais¹². No que diz respeito à hiper-responsividade aos estímulos auditivos, a literatura apresenta diferentes terminologias, sendo elas: hipersensibilidade auditiva, hiperacusia e hiper-responsividade auditiva. Autores referem que o termo hipersensibilidade auditiva é inadequado, pois se refere a uma condição de um limiar auditivo melhor que o considerado dentro da normalidade, o que é impossível de mensurar¹³. Por isso, no presente estudo, será utilizado o termo hiper-responsividade.

James et al¹⁴ avaliaram 71 crianças entre seis e 14 anos, com limiares auditivos tonais normais e diagnosticadas com TEA, e observaram que 86% delas apresentaram déficits em um ou mais testes aplicados. Os autores constataram taxas de falhas significativamente aumentadas em comparação com crianças neurotípicas em testes de reconhecimento de fala no ruído, integração binaural e atenção. Pais de crianças com TEA relataram que a presença de ruído resultou em dificuldades de foco em tarefas, desatenção, distração e angústia em seus filhos¹¹.

Em um estudo¹¹ realizado com 12 crianças com limiares auditivos tonais normais e diagnosticadas com TEA, os autores observaram melhora significativa na atenção e memória auditiva em diversas situações, tanto no ambiente escolar quanto domiciliar e social, com o uso do SMR. Além disso, o uso do dispositivo pelos participantes melhorou significativamente a percepção auditiva da fala, a tolerância ao ruído na presença de fala e a compreensão das instruções auditivas. Diante

dos resultados, os autores sugeriram que o uso do SMR pode ser considerado no tratamento e gerenciamento escolar e domiciliar dos déficits auditivos frequentes em crianças com TEA.

Diante do exposto, o objetivo do presente estudo foi avaliar o que dizem as evidências científicas sobre o uso do SMR em crianças com limiares auditivos tonais normais diagnosticadas com TEA.

Métodos

Tipo de estudo

Trata-se de uma revisão integrativa da literatura, que seguiu as seguintes etapas: identificação do problema, busca na literatura, avaliação, apresentação e discussão dos dados.

Adotou-se a seguinte questão norteadora: "Quais são os beneficios do uso do SMR como

tecnologia assistiva para crianças com limiares auditivos tonais normais diagnosticadas com TEA?"

Estratégia de busca

Realizou-se, em 1º de julho de 2024, uma busca nas bases de dados Pubmed, LILACS e Scielo, bem como nas fontes de informação *Google* Acadêmico, Biblioteca Digital Brasileira de Teses e Dissertações (BDTD) e Catálogo de Teses e Dissertações CAPES. Os descritores, em português e inglês, foram selecionados a partir dos Descritores em Ciências da Saúde (DeCS) e *Medical Subject Headings* (MeSH). Esses descritores foram combinados entre si, conforme apresentado no Quadro 1. As buscas no *Google* Acadêmico foram limitadas às dez primeiras páginas de resultados, por serem consideradas as mais relevantes.

Quadro 1. Combinações de descritores utilizadas nas buscas.

Base de dados	Combinação para busca			
Pubmed	("Child"[All Fields] OR "Child"[MeSH] OR "Children"[All Fields] OR "Child, Preschool"[MesH] OR "Child, Preschool"[All Fields] OR "Preschool Child"[All Fields] OR "Preschool Children"[All Fields]) AND ("Autistic Disorder"[MeSH] OR "Autistic Disorder"[All Fields] OR "Autism Spectrum Disorder"[MeSH] OR "Autism Spectrum Disorder"[All Fields] OR "Kanner Syndrome"[All Fields] OR "Infantile Autism"[All Fields] OR "Autistic Spectrum Disorders"[All Fields] OR "Autistic Spectrum Disorders"] AND "Auditory Perception"[Mesh]			
LILACS	("Child" OR "Children" OR "Criança" OR "Niño" OR "Enfant") AND ("Autistic Disorder" OR "Autism Spectrum Disorder" OR "Infantile Autism" OR "Autism" OR "Transtorno Autístico" OR "Autismo" OR "Autismo" OR "Autismo" OR "Transtorno Autístico" OR "Tecnologia assistiva" OR "Dispositivos de Autoayuda" OR "Dispositifs d'assistance au mouvement") (db:("LILACS"))			
Scielo	(criança) AND (transtorno do espectro autista) AND (tecnologia assistiva) AND in:("scl") #1 (((TS=(child)) OR TS=(children)) OR TS=(criança)) OR TS=(crianças)) OR TS=(niño) AND #2 ((((TS=(autistic spectrum disorder)) OR TS=(autism spectrum disorder)) OR TS=(autism)) OR TS=(transtorno autístico)) OR TS=(autismo infantil) AND #3 ((((TS=(self-help devices)) OR TS=(tecnologia assistiva)) OR TS=(dispositivos de autoayuda))			
Biblioteca Digital Brasileira de Dissertações e Teses	"criança" AND "transtorno do espectro autista" AND "tecnologia assistiva"			
Catálogo de Teses e Dissertações -CAPES	criança AND transtorno do espectro autista AND tecnologia assistiva			
Google Acadêmico	criança AND transtorno do espectro autista AND sistemas de microfone remoto child AND autistic spectrum disorder AND remote-microphone technology			

Fonte: elaboração própria

Critérios de seleção

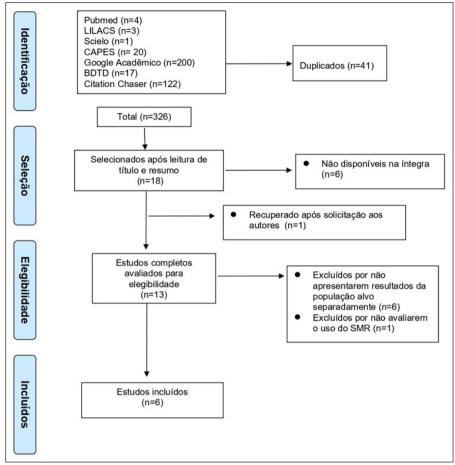
Adotaram-se como critérios de inclusão: estudos disponíveis na íntegra, com acesso livre e/ou por meio de *Virtual Private Network* (VPN); que avaliaram o uso do SMR em participantes com menos de 18 anos diagnosticados com TEA. Foram excluídos estudos de revisão de literatura, estudos cuja população apresentasse perda auditiva, estudos que não apresentaram separadamente os resultados de participantes com menos de 18 anos, estudos realizados exclusivamente com adultos (a partir de 18 anos)¹⁵, estudos que não apresentaram separadamente os resultados de participantes com TEA, capítulos de livros, artigos informativos em sites e anais de eventos.

Processo de seleção

A busca foi inserida no software *Rayyan*, e os estudos duplicados foram removidos. Duas revisoras independentes realizaram a seleção dos artigos, de maneira cega, separadamente e simultaneamente, utilizando o mecanismo *blind spot* do *software*. Nesse processo, os estudos recuperados foram divididos em três grupos: incluídos, excluídos ou talvez (para os que geraram dúvidas). Inicialmente, os estudos foram selecionados pelo título e no resumo. Uma terceira revisora resolveu os conflitos. Em seguida, foi realizada a leitura na integra dos estudos selecionados. Com a aplicação

dos critérios de seleção, definiu-se a inclusão ou exclusão dos estudos lidos na íntegra.

Na segunda etapa, os estudos selecionados pelo título e resumo foram inseridos na plataforma *Citation Chaser*. Os estudos recuperados por meio da plataforma também foram analisados pelo título e resumo e, os selecionados, lidos na íntegra.


Extração dos dados

Uma tabela foi elaborada para a extração de dados por duas revisoras independentes. Para todos os estudos incluídos, após a leitura completa, foram coletadas as seguintes informações: ano de publicação, autoria, tamanho da amostra, idade dos participantes, método de avaliação, instrumentos de avaliação, dispositivo utilizado, principais resultados e conclusão.

Resultados

Ao todo, foram recuperados 367 estudos. Após a exclusão dos duplicados, restaram 326 estudos, dos quais 18 foram selecionados pelo título e resumo. Seis artigos não estavam disponíveis na íntegra gratuitamente ou por meio da VPN e, após contato com os autores, foi possível obter apenas um deles. Dessa forma, 13 artigos foram lidos na íntegra. Após a leitura na íntegra, seis estudos^{5,11,16-19} foram incluídos nesta revisão (Figura 1).

Fonte: autoria própria

Figura 1. Fluxograma descritivo do processo de busca

Dos seis estudos incluídos nesta revisão, três foram realizados nos Estados Unidos da América (EUA)^{11,16,19}, dois na Austrália^{5,18} e um na Nova Zelândia¹⁷.

No total, 114 crianças foram avaliadas, sendo 85 diagnosticadas com TEA. A idade dos

participantes variou entre 3 e 17 anos. Quatro estudos^{5,11,16,18} incluíram, além da avaliação da criança com TEA, a análise sob a perspectiva dos professores e/ou pais. Os principais dados dos estudos incluídos na revisão estão apresentados na Tabela 1.

Tabela 1. Principais dados dos estudos incluídos na revisão (n=6)

Ano	Autoria	n	Idade (anos)	Método de Avaliação	Instrumentos de Avaliação	Dispositivo utilizado	Principais resultados	Conclusão
2020	Keller et al	7	3 a 5	Avaliação realizada em três salas de aula, com ruído de fo5dB, durante brincadeira livre, com intervalo entre 1 e 7 dias, em período máximo de 2,5 meses. As sessões foram gravadas em áudio e vídeo e posteriormente avaliadas cegamente, sem conhecimento do avaliador sobre a situação de escuta (SMR ligado ou desligado).	examinador durante cada sessão de avaliação: (a) resposta ao nome, (b) identificação de objeto e (c) execução de uma instrução de uma etapa. Cada tarefa foi avaliada em relação a: (a) nível de independência do estímulo e (b) latência da resposta correta (segundos entre o término do comando pelo examinador e o momento em que a criança respondeu adequadamente). Um escore numérico foi atribuído com base no nível (ou quantidade) de estímulo necessário para a criança responder com sucesso.	Transmissor: Phonak® Inspiro Receptor: alto- falante de campo sonoro Phonak® Roger DigiMaster 5000 fixado na parede, a uma distância de aproximadamente 1,2 a 3 metros	3 participantes apresentaram escore indicativo de maior independência na execução da tarefa na situação de uso do SMR. 4 participantes demonstraram menor latência de resposta na situação de uso do SMR	Há evidências de efeitos modestos de curto prazo do uso do SMR no desempenho auditivo funciona de crianças em idade pré-escola com TEA.
					O maior escore de latência que uma criança poderia receber era 10.			
2017	Rance et al	26	7 a 15	2 grupos Grupo A (n=16): uso do SMR pessoal Grupo B (n=10): uso do SMR em campo livre Uso do SMR por 1 a 2 semanas, na escola e em ambiente domiciliar, por 4-6 horas/ dia.	Pais: CBCL; Professores: TRF Crianças: APHAB; CNC; CELF-4; Análise do cortisol	Transmissor: Phonak® Roger- Inspiro Receptor: Phonak® Roger Focus	Desempenho significativamente melhor com o SMR no teste de percepção auditiva da fala no ruído. Com o uso do SMR crianças que apresentavam desempenho aquém ao esperado para a idade no CNC, passaram para a faixa de normalidade. As classificações de dificuldades percebidas foram reduzidas com o SMR. Dos 6 pais que completaram o CBCL após o uso do SMR, 2 referiram que o nível de ansiedade social da criança diminuiu; Houve diferença significativa na taxa de cortisol na condição de escuta	O uso do SMR pode melhorar a percepção auditiva da fala o reduzir o estress relacionado à audição em crianças com TE.

Ano	Autoria	n	Idade (anos)	Método de Avaliação	Instrumentos de Avaliação	Dispositivo utilizado	Principais resultados	Conclusão
2016	Schafer et al	12	6 a 17	Avaliação pré e pós 6 semanas de teste com SMR	Pais: CHILD Professores: LIFE-R; CHAPS; Crianças: LIFE-R Student Version; BKB-SIN; RIPA-P; Teste do Nível Aceitável de Ruído	Transmissor: Phonak® Roger- Inspiro Receptores: Phonak® Roger Focus	A melhora da percepção auditiva da fala no ruído com o SMR variou de 0,25 a 9,25dB. No geral, os participantes demonstraram tolerar um nível de ruído 10 dB mais intenso com o SMR. Os professores observaram beneficios significativos nas situações educacionais com o uso do SMR	O uso do SMR melhorou significativamente a percepção da fala, a tolerância ao ruído na presença da fala e a compreensão das instruções auditivas em crianças com TEA
2014	Rance et al	20	8 a 15	2 grupos: GE: com TEA. Uso do SMR de 4-6 horas/dia (n=10) GC: neurotípicos; testes sem e com SMR (n=10)	Professores: LIFE Crianças: APHAB; Listening in Spatialized Noise test; CNC;	Transmissor: Phonak® Inspiro Receptores: Phonak ® iSense	Os professores consideraram o SMR altamente benéfico para as crianças participantes. Melhora significativa na percepção auditiva da fala com SMR em ambos os grupos. No GE, a pontuação média no CNC para a condição sem SMR foi de 68,9% e para a condição com SMR foi de 85,6%.	O uso do SMR melhorou as habilidades de PAC, resultando em melhorias no reconhecimento auditivo, atenção e interação social, sendo uma opção viável para algumas crianças com TEA.
2013	Schafer et al	22	9 a 11	3 grupos: TEA (n=7) TDAH (n=4) Neurotípicos (n=11) Teste 1: Uso do SMR em sala de aula por 8 dias, durante 45 min/dia Teste 2: Uso do SMR em sala de aula por 13 dias	Pais: Professores: SIFTER; CHAPS; Questionário informal de validação social Participantes: BKB- SIN; Observação comportamental em sala de aula; Questionário informal de validação social	Transmissor: Phonak® Inspiro Receptores: Phonak ® iSense	A maioria das crianças conseguiu tolerar e usar os receptores SMR de forma consistente por 280 minutos no teste 1 e 455 minutos no teste 1 e 455 minutos no teste 2. Todas as crianças apresentaram melhoria no reconhecimento de fala no ruído de pelo menos 3 dB em uma das duas sessões de teste. A melhoria máxima com o SMR foi de 11 dB. No Teste 1, houve vantagem de 6,1dB para o grupo TEA com o uso do SMR. No Teste 2, a vantagem foi de 7,8dB. As médias nas avaliações dos professores revelaram dificuldades de escuta significativamente menores para as crianças ao usarem o SMR.	O uso do SMR melhorou significativamente o reconhecimento de fala no ruído e diminuiu os comportamentos de desatenção em crianças com TEA. Os professores apresentaram relatos positivos sobre o benefício do SMR em sala de aula.

Legenda: ACS= Wechsler Advanced Clinical Solutions APHAB=Abbreviated Profile of Hearing Aid Benefit; BKB-SIN=Bamford-Kowal-Bench Speech-in-Noise; CBCL=Child Behaviour Checklist; CELF-4=Clinical Evaluation of Language Fundamentals; CHAPS=Children's Auditory Performance Scale; CHILD=Children's Home Inventory for Listening Difficulties; CNC=Consonant-Nucleus-Consonant Word Test; IVA-QS CPT=Integrated Visual and Auditory Quick Screen Continuous Performance Task; LIFE-R=Listening Inventory for Education-Revised; LBAS=Listening Behaviors in Autism Scale; LISN-S=Listening in Spatialized Noise – Sentence; n=nº de participantes; MMN=Mismatch Negativity; PEAC=Potenciais Evocados Auditivos Corticais; RIPA-P=Ross Information Processing Assessment – Primary; SIFTER=Screening Instrument for Targeting Educational Risk; SMR=Sistema de MicrofoneRemoto; SSP=Short Sensory Profile 2; TA=Treinamento Auditivo; TEA=Transtorno do EspectroAutista; TDAH=Transtorno do Déficit de Atenção e Hiperatividade; TRF=Teacher Report Form

As referências dos estudos excluídos após a leitura na íntegra, bem como os motivos da exclusão, estão listados no Quadro 2.

Quadro 2. Estudos excluídos após leitura na íntegra.

Referência do estudo excluído	Motivo
Dunn A, James P, Pelosi A, Sorensen E, Oleson J. Managing listening difficulties in patients with ASD and normal hearing sensitivity. Hear Rev. 2021; 28(10):12-16.	Não avaliou benefícios do uso do SMR
Feldman JI, Thompson E, Davis H, Keceli-Kaysili B, Dunham K, Woynaroski T et al. Remote microfone systems can improve listening-in-noise accuracy and listening effort for youth with autism. Ear Hear. 2022; 43(2):436-447. Doi: https://doi.org/10.1097/AUD.0000000000001058	População de 7 a 21 anos. Não apresentou os resultados da população de até 18 anos separadamente
Gopal KV, Schafer EC, Mathews L, Nandy R, Beaudoin D, Schadt L et al. Effects of auditory training on electrophysiological measures in individuals with autism spectrum disorder. J Am Acad Audiol. 2020; 31:96-104. Doi: https://doi.org/10.3766/jaaa.18063	Uso combinado de treinamento auditivo
Leung JH, Purdy SC, Corballis PM. Improving emotion perception in children with autism spectrum disorder with computer-based training and hearing amplification. Brain Sci. 2021; 11(4):469. Doi: https://doi.org/10.3390/brainsci11040469	Uso combinado de treinamento auditivo
Schafer EC, Gopal KV, Mathews L, Kaiser K, Canale E, Creech A. Verification and validation of remote-microphone technology on children and college-age adults who have autism spectrum disorder. J Educ Ped Rehab Audiol. 2019; 24:1-7.	População de 7 a 21 anos. Não apresentou os resultados da população de até 18 anos e nem de população com TEA separadamente
Schafer EC, Gopal KV, Mathews L, Thompson S, Kaiser K, McCullough S et al. Effects of auditory training and remote microphone technology on the behavioral performance of children and young adults who have autism spectrum disorder. J Am Acad Audiol. 2019; 30:431-443.Doi: https://doi.org/10.3766/jaaa.18062	Uso combinado de treinamento auditivo
Schafer EC, Traber J, Layden P, Amin A, Sanders K, Bryant D et al. Use of wireless technology for children with auditory processing disorders, attention-deficit hyperactivity disorder, and language disorders. Semin Hear. 2014; 35(3):193-205. Doi: https://doi.org 10.1055/s-0034-1383504	Não apresentou os resultados das crianças com TEA separadamente
Thompson E, Feldman JI, Valle A, Davis H, Keceli-Kaysili B, Dunham K et al. A comparison of listening skills of autistic and non-autistic youth while using and not using remote microphone systems. J Speech Lang Hear Res. 2023; 66(11):4618-4634. Doi: https://doi.org/10.1044/2023_JSLHR-22-00720	População de 7 a 22 anos. Não apresentou os resultados da população de até 18 anos separadamente

Fonte: elaboração própria

Legenda: TEA=Transtorno do Espectro Autista; SMR=Sistemas de Microfone Remoto.

Discussão

O estudo mais antigo incluído nesta revisão data de 2013¹⁶ e foi conduzido por uma equipe de pesquisadores dos EUA. No Brasil, também em 2013, o SMR (na época representado pela tecnologia FM) foi incorporado à Tabela de Procedimentos, Medicamentos, Órteses, Próteses e Materiais Especiais (OPM) do Sistema Único de Saúde (SUS) como uma tecnologia assistiva para crianças com perda auditiva²⁰.

Percebe-se que, nos EUA, as investigações científicas sobre o tema têm avançado, visto que dois estudos incluídos nesta revisão foram realizados no país, assim como outros seis estudos lidos na íntegra, porém não incluídos, que também ava-

liaram o benefício do uso do SMR em indivíduos com TEA (Quadro 2). Outros estudos relacionados a essa temática também serão apresentados nessa discussão que, para facilitar a leitura, será apresentada em subtópicos.

Percepção auditiva da fala

Os estudos^{5,11,16-19} incluídos demonstraram que o SMR proporcionou melhora na percepção auditiva da fala em crianças ouvintes com diagnóstico de TEA.

Schafer et al¹⁶ utilizaram um teste de percepção auditiva da fala com ruído competitivo, apresentando sentenças para reconhecimento em uma intensidade fixa (60 dBNA) e o ruído em níveis variados de intensidade. O resultado obtido foi a relação

S/R necessária para que a criança reconhecesse a fala em 50% das apresentações. Inicialmente, essa avaliação foi realizada durante os dois últimos dias de um período de 8 dias de uso do SMR. Em um segundo momento, a avaliação foi repetida após um novo período de 13 dias de uso. Em ambos os momentos, foram avaliadas duas situações: sem o uso do SMR e com o uso do SMR. Os autores encontraram um grande efeito benéfico do SMR na amostra estudada. No entanto, a análise da magnitude do efeito foi realizada com dados combinados dos grupos de crianças com TEA e TDAH, devido ao tamanho da amostra. Ao compararem os grupos (crianças com TEA, crianças com TDAH e crianças neurotípicas), os autores não encontraram diferencas significativas, demonstrando que crianças com TEA e TDAH podem ter o mesmo beneficio do uso do SMR para a percepção auditiva da fala em sala de aula que seus pares neurotípicos.

No estudo de Schafer et al¹¹, todas as oito crianças avaliadas apresentaram melhor limiar de reconhecimento de fala no ruído durante o uso do SMR. Para dois participantes, a melhora variou entre 0,25 e 1dB, enquanto para os outros seis, variou de 3,75 a 9,25dB. Além disso, cinco crianças conseguiram completar uma tarefa de avaliação de níveis aceitáveis de ruído, que exigia que indicassem o nível de ruído competitivo que estavam dispostas a tolerar enquanto ouviam um sinal de fala. De maneira geral, as crianças avaliadas toleravam níveis de ruído até 10 dB mais fortes com o uso do SMR, sendo que um dos participantes demonstrou tolerar intensidade de ruído 14 dB mais forte com o dispositivo.

Ao avaliarem um grupo misto de crianças e adultos com TEA, Schafer et al²¹ observaram uma média de 29% de melhora na percepção auditiva da fala no ruído. No estudo, 14 dos 19 participantes experimentaram melhorias que variaram de 10% a 80%, com os participantes restantes mostrando pouca ou nenhuma melhora. Thompson et al²² avaliaram grupos de jovens com e sem TEA e constataram que os jovens com TEA apresentaram melhores resultados em relação à percepção auditiva da fala com o uso do SMR. Rance et al¹⁸ avaliaram 20 crianças com TEA e constataram que elas consideravam sua capacidade auditiva prejudicada em uma ampla gama de circunstâncias. Os autores observaram que o SMR proporcionou melhora na percepção auditiva da fala mesmo sem nenhum treinamento prévio ou experiência com o dispositivo nos dez participantes que o utilizaram. Todos referiram melhora na relação S/R e maior facilidade de interação social com o uso do SMR.

Crianças com TEA podem apresentar um sistema auditivo nervoso central disfuncional ou imaturo, resultando em déficits a nível de tronco encefálico e cortical, sendo comum a ocorrência de alterações nas habilidades auditivas²³. No estudo de Rance et al¹⁸, 12 das 20 crianças avaliadas (60%) apresentaram TPAC. Na população de crianças com TEA, a percepção auditiva da fala está relacionada ao raciocínio não verbal²⁴, havendo uma associação bidirecional entre cérebro e comportamento. A percepção auditiva influencia o aprendizado da linguagem, enquanto o uso e a experiência da linguagem facilitam o processamento auditivo eficiente²⁵. Assim, considerando que o SMR pode melhorar a percepção auditiva da fala em crianças com TEA, o uso do dispositivo pode contribuir para uma melhor comunicação.

Rance et al⁵ avaliaram 26 crianças, dividindo--as em dois grupos: 16 participantes, com idades entre 6 e 12 anos, utilizaram o SMR pessoal, e 10 participantes, com idades entre 13 e 16 anos, utilizaram o SMR em campo livre no ambiente de sala de aula. Os autores mencionaram que o uso do receptor do SMR pessoal é mais tolerável para crianças mais novas do que para os adolescentes, justificando assim a divisão entre os grupos. Os resultados demonstraram benefícios para ambos os tipos de SMR. No entanto, os autores destacaram que o SMR em campo-livre é uma opção viável para melhorar as habilidades auditivas em sala de aula para crianças com TEA, sem a necessidade do uso de um dispositivo pessoal. Um estudo clínico randomizado²⁶ concluiu que sistemas de amplificação em campo-livre podem ser utilizados como uma estratégia para uma sala de aula inclusiva, apoiando alunos do ensino fundamental com TEA, que apresentaram melhor processamento fonológico após o uso da tecnologia. Vale ressaltar que esse estudo²⁶ não envolveu o uso de SMR.

Keller, Tharpe e Bodfish¹⁹ avaliaram a eficácia do uso do SMR em campo-livre, em salas de aula de crianças em idade pré-escolar com TEA. Embora os efeitos tenham sido modestos em magnitude, os resultados apresentaram evidências preliminares de que o dispositivo pode ser eficaz para melhorar o desempenho auditivo funcional nessa população. Durante procedimentos instrucionais, o uso do SMR demonstrou a capacidade de reduzir a latência

de resposta em algumas crianças com TEA em idade pré-escolar, o que, por sua vez, pode aumentar a quantidade de ensino ativo realizada em um intervalo de tempo determinado. Pequenas melhorias no desempenho auditivo funcional, que favoreçam o desenvolvimento da linguagem receptiva, especialmente nos primeiros anos escolares, podem ter impactos significativos no desenvolvimento da comunicação e interação social¹⁹.

Crianças com TEA também podem apresentar dificuldades em utilizar informações prosódicas emocionais da fala, o que pode prejudicar a comunicação social²⁷. Nesse contexto, Leung et al¹⁷ objetivaram investigar como a percepção da prosódia emocional difere entre crianças com TEA e crianças neurotípicas. Para isso, realizaram um estudo longitudinal que avaliou os resultados de uma intervenção em crianças com TEA, em quatro momentos: duas vezes antes da intervenção e duas após um período de três semanas de intervenção. Durante esse período, todas as crianças com TEA participaram de nove sessões de treinamento auditivo computadorizado, com duração de 20 a 30 minutos, realizadas três vezes por semana, utilizando seus SMR. Com o consentimento das crianças e o apoio dos pais e professores, o grupo com TEA também utilizou o SMR em ambiente escolar e domiciliar durante a intervenção. Todas as crianças apresentavam limiares auditivos tonais normais e foram submetidas à pesquisa dos Potenciais Evocados Auditivos Corticais (PEAC), com apresentação de amostras de gravação de fala de monossílabos / ba/ produzidos por um falante masculino, em tons emocionais de voz irritado, feliz, triste e neutro. Na avaliação pós-intervenção, os autores observaram que o principal efeito da intervenção (treinamento auditivo combinado ao uso de SMR) foi nas latências dos PEAC. Antes da intervenção, o grupo de crianças com TEA apresentou respostas significativamente mais lentas em comparação com o grupo de crianças neurotípicas. Após a intervenção, houve uma melhora significativa na velocidade de resposta das crianças com TEA, eliminando as diferenças significativas de latência entre os grupos. Além disso, após a intervenção, as crianças com TEA passaram a apresentar respostas diferentes para diferentes tons emocionais emitidos.

Evidências²⁸ demonstram que indivíduos com TEA apresentam diferenças no processamento auditivo cortical em comparação com seus pares neurotípicos, sendo comumente observada uma diminuição da amplitude e aumento da latência dos PEAC nessa população²⁹. Gopal et al³⁰ avaliaram 15 crianças e jovens com TEA, submetendo-os a um programa de treinamento auditivo computadorizado combinado com o uso do SMR no ambiente domiciliar e escolar por 12 semanas. Os resultados pós-intervenção demonstraram latências menores e amplitudes maiores dos potenciais evocados auditivos de tronco encefálico (PEATE). Schafer et al³¹ também avaliaram crianças e jovens adultos com TEA e observaram que a combinação de um programa de treinamento auditivo computadorizado, conduzido por um fonoaudiólogo, com o uso do SMR em ambiente domiciliar e escolar, melhorou significativamente as habilidades de processamento auditivo central e a memória de trabalho nessa população. No entanto, os autores destacam que essas evidências podem não ser generalizáveis para toda a população de indivíduos com TEA, visto que a amostra do estudo era homogênea em relação à etnia e raça e possuía linguagem receptiva suficiente para compreender as instruções das tarefas. Em um estudo³² realizado com adultos com TEA, os resultados revelaram alterações funcionais no córtex temporal lateral para o processamento da informação de prosódia emocional, sendo que a redução dessa resposta cortical estava associada à gravidade do TEA e diretamente vinculada às dificuldades sociais e comunicativas dessa população. Nesse sentido, considerando que o uso do SMR pode contribuir para a melhoria das respostas corticais e do processamento da prosódia emocional, pode-se pensar no beneficio do uso do dispositivo para as dificuldades sociais e comunicativas de indivíduos com TEA.

Hiper-responsividade tátil

Evidências indicam a presença de neurônios somatossensoriais disfuncionais em diversos modelos com TEA, bem como alterações nos circuitos cerebrais, especialmente no córtex somatossensorial, que estão diretamente associadas a comportamentos característicos dessa população³³.

No estudo conduzido por Schafer et al¹⁶, sete participantes removeram o receptor do SMR em algum momento durante o uso, relatando incômodo ou desconforto. O tempo que essas crianças permaneceram sem o receptor, após sua retirada, variou de 10 a 41,5 minutos, com uma média de 18 minutos. Além disso, houve relatos ocasionais de queixas relacionadas à retenção do receptor na

orelha. No entanto, após ajustes realizados pelo profissional, os participantes continuaram a utilizar o dispositivo. Apesar das dificuldades relatadas por alguns participantes, os resultados sugerem respostas altamente positivas em relação à facilidade de uso e ao conforto.

Rance et al¹⁸ observaram que, das dez crianças que testaram o SMR, duas não se adaptaram ao dispositivo. Uma dessas crianças não conseguiu tolerar o uso do receptor a nível da orelha por mais do que alguns minutos, devido à hiper-responsividade tátil. A latência no processamento de estímulos táteis pode ser menor em crianças com TEA, quando comparadas a seus pares neurotípicos, sendo ainda mais pronunciada em crianças mais jovens. Isso indica um processamento tátil mais rápido e, consequentemente, maior reatividade tátil nessa população³⁴. Dessa forma, o uso do receptor SMR pessoal, posicionado a nível da orelha da criança, pode não ser uma opção viável para todas as crianças com TEA5. Nesse contexto, o uso do SMR em campo-livre (Dynamic Soundfield) surge como uma alternativa viável para melhorar a relação S/R em salas de aula, especialmente para crianças com TEA que apresentam hiper-responsividade tátil.

Comportamento

Entre outros sinais, crianças com TEA podem apresentar comportamentos disruptivos, como irritabilidade e hiperatividade, que impactam negativamente suas interações sociais, tanto em ambiente domiciliar quanto escolar^{35,36}.

No estudo de Schafer et al¹⁶, quatro avaliadores (dois avaliadores primários e dois para análise de confiabilidade) observaram o comportamento de crianças com TEA em sala de aula. As avaliações foram realizadas em 77 intervalos de 30 segundos cada, e os comportamentos foram classificados em sete categorias principais, incluindo comportamentos disruptivos, inapropriados e de desatenção. O tamanho do efeito foi calculado para as condições sem e com o uso do SMR, com os resultados indicando um efeito significativo e classificado como grande. Esses achados reforçam a eficácia do SMR na redução de comportamentos disruptivos em sala de aula entre crianças com TEA.

Rance et al⁵ também observaram benefícios importantes relacionados ao uso do SMR. No estudo, o dispositivo reduziu o estresse auditivo das crianças, com resultados indicando níveis significativamente menores de cortisol durante situações

desafiadoras de escuta. Embora não seja possível determinar precisamente quais aspectos da interação melhoraram com a intervenção, é plausível que a melhora do sinal auditivo proporcionada pelo SMR tenha contribuído para uma maior capacidade de concentração, reduzindo a distração e resultando em melhor atenção conjunta.

Crianças com TEA podem apresentar uma tendência consistente de melhora em comportamentos disruptivos ao longo do tempo, especialmente aquelas que demonstram melhor adaptação escolar e menor necessidade de suporte³⁶. Nesse sentido, é essencial avaliar cada caso individualmente. Intervenções auditivas que reduzem o estresse, como o uso do SMR, mostram-se relevantes para essa população e devem ser consideradas, principalmente no contexto escolar⁵. Além disso, intervenções que abordam também as questões comportamentais podem potencializar o benefício em outras áreas, melhorando a interação social das crianças com seus pares e professores, promovendo maior engajamento nas atividades propostas³⁷.

Perspectivas de pais e professores

Durante a infância e adolescência, os principais ambientes de convivência são o domiciliar e o escolar, ambos fortemente influenciados pelos comportamentos apresentados por crianças com TEA³⁸. Além disso, o uso bem-sucedido do SMR requer a parceria entre o fonoaudiólogo, a família e a escola¹. É essencial que todos os envolvidos sejam capazes de perceber os benefícios do dispositivo para a criança. É importante destacar que nem todas as crianças com TEA têm a capacidade de compreender instruções e responder a questionários ou testes de percepção auditiva da fala¹¹¹,¹6-18</sup>. Por isso, os relatos de pais e professores desempenham um papel fundamental na avaliação do uso do dispositivo pelos profissionais de saúde auditiva.

Nos estudos incluídos nesta revisão, a percepção de pais e professores foi avaliada por meio de questionários validados, aplicados em formato de entrevista ou preenchidos de forma autônoma (Tabela 1). Professores relataram que o SMR foi altamente benéfico para as crianças com TEA, indicando melhorias percebidas na compreensão auditiva, no comportamento em sala de aula e na atenção^{11,18}. Os professores também observaram mudanças positivas na capacidade dos alunos de seguir instruções verbais em situações de grupo, em ambientes ruidosos e durante os deslocamen-

tos do professor pela sala de aula¹¹. Em um dos estudos¹⁶, as respostas dos professores indicaram efeitos moderados do uso do SMR em situações de silêncio e ruído, bem como na melhora da memória auditiva, embora o impacto na atenção auditiva tenha sido classificado como pequeno. No geral, os professores relataram maior facilidade em atrair a atenção das crianças com o uso do SMR. Contudo, destacaram que algumas crianças apresentaram maior dificuldade de adaptação e que o dispositivo poderia ser mais útil em salas de aula compostas por alunos com níveis acadêmicos similares.

Pais de crianças com limiares auditivos tonais normais e TEA relataram que seus filhos apresentaram menos dificuldades em ambientes silenciosos e ruidosos, ao interagir com fontes sonoras distantes e em situações sociais quando utilizavam o SMR. Também observaram uma redução na hiper-responsividade auditiva, com menor ocorrência de respostas negativas a ruídos intensos¹¹. Entretanto, Rance et al⁵ constataram que o uso do SMR não modificou significativamente o grau de aversão a sons. Dos seis pais que completaram um questionário sobre o nível de ansiedade das crianças, dois relataram uma melhora superior a 15 pontos com o uso do dispositivo, enquanto os demais apresentaram respostas idênticas nas condições situação de uso e não uso do SMR.

Apesar dos benefícios relatados, obstáculos para o uso do SMR podem surgir tanto no ambiente domiciliar quanto no escolar. Em um estudo¹⁶, os pais de um participante solicitaram a interrupção do uso do SMR sem fornecer explicações, mesmo após repetidas solicitações da escola e dos pesquisadores. Os autores sugeriram que a resistência poderia estar associada à recusa de um dos pais em aceitar o uso de dispositivos auriculares pela criança. Dificuldades na adesão ao uso do SMR são relatadas até mesmo por crianças com perda auditiva que já utilizam um DEAA¹. Entre os desafios mencionados, destacam-se a vergonha de utilizar o dispositivo e a dificuldade de manuseio. Apesar disso, a maioria de pais de crianças com perda auditiva que não aderem ao uso do SMR não apresenta sugestões para melhorar o processo de adaptação³⁹.

Essa resistência pode ser ainda maior em crianças com limiares auditivos tonais normais, considerando que, inicialmente, elas não apresentam uma necessidade evidente de dispositivos auditivos, e o uso do SMR pode expor uma condição que, de

outra forma, não seria visível, acarretando potencial estigmatização. Em um estudo¹¹, dois professores se recusaram a responder aos questionários e a implementar o uso do SMR em sala de aula, justificando desconhecimento sobre os benefícios do dispositivo, seu manejo e o funcionamento da tecnologia⁴⁰. Esse desconhecimento reforça a importância de estratégias de orientação e capacitação direcionadas não apenas a professores de crianças com perda auditiva, mas também àqueles que trabalham com crianças com TEA.

Outras considerações

Para a adaptação adequada do SMR em crianças com limiares auditivos tonais normais diagnosticadas com TEA, Schafer et al²¹ forneceram evidências que apoiam uma abordagem em três etapas: (1) documentar a necessidade educacional do uso do SMR; (2) realizar o ajuste e a verificação eletroacústica do dispositivo; (3) validar os benefícios obtidos. Os autores enfatizam que a avaliação da percepção auditiva da fala, combinada a medidas qualitativas, pode documentar as dificuldades da criança e justificar o uso do dispositivo no ambiente educacional. Essas informações podem ser coletadas pelo fonoaudiólogo educacional. No entanto, avaliar os benefícios do uso do SMR em crianças com TEA apresenta desafios significativos.

No estudo de Schafer et al⁴¹, nenhuma das crianças com TEA conseguiu completar o teste de percepção auditiva da fala no ruído. Rance et al¹⁸ relataram que todos os participantes de seu estudo eram capazes de se comunicar verbalmente e compreender as instruções para realizar a avaliação proposta. Dos 20 participantes, 14 completaram com sucesso a tarefa de avaliação do processamento auditivo. Em outro estudo¹¹, observou-se que crianças com TEA também apresentam dificuldades para compreender e executar testes de percepção auditiva da fala no ruído, assim como para responder a instrumentos como questionários. Das 12 crianças avaliadas, oito conseguiram participar do teste de percepção auditiva da fala com ruído competitivo.

Leung et al¹⁷ ofereceram às crianças com TEA participantes de seu estudo a possibilidade de realizar as avaliações comportamentais e sessões de treinamento auditivo em dois locais: na clínica-escola da Universidade ou em um ambiente silencioso, em suas próprias casas. Os autores ressaltaram a importância de garantir que essas crianças estejam em um ambiente onde se sintam confortáveis e

menos ansiosas no momento da avaliação. Para o registro dos PEAC, foi utilizada uma câmara com isolamento acústico, localizada na Universidade.

Para futuras investigações sobre os benefícios do uso do SMR em crianças com TEA, especialmente aquelas que incluam a realização de testes de percepção auditiva da fala com ruído competitivo e/ou avaliação do processamento auditivo, é essencial assegurar a realização dos procedimentos em ambientes adequados. Garantir condições que minimizem possíveis interferências de comportamentos disruptivos favorece a obtenção de respostas mais fidedignas e confiáveis.

Implicações práticas do estudo

O TEA é uma das causas mais frequentes de vulnerabilidade no desenvolvimento infantil. A identificação e o manejo do déficit auditivo nessa população são essenciais, considerando que tanto a perda auditiva quanto as alterações do processamento auditivo são frequentemente observadas e podem agravar as dificuldades sociais e de comunicação, que são características centrais do transtorno. Dificuldades para ouvir em situações com ruído competitivo são comuns entre crianças com TEA. Assim, o uso de tecnologias sem fio, particularmente os SMR, apresenta-se como uma estratégia viável para gerenciar essas dificuldades em parte dessa população⁴². Keller, Tharpe e Bodfish¹⁹ destacam, entretanto, que o uso do SMR não deve ser considerado como um tratamento isolado, mas sim combinado com intervenções comportamentais baseadas em evidências e com outros dispositivos de tecnologia assistiva, como os de comunicação aumentativa e alternativa.

A colaboração entre pesquisadores, profissionais, gestores responsáveis pela formulação de políticas públicas e a comunidade de pessoas com TEA é indispensável para garantir que dispositivos de tecnologia assistiva estejam disponíveis e acessíveis a essa população⁴².

Evidências^{1,3-4} apontam os benefícios do uso do SMR para crianças com perda auditiva no Brasil. Contudo, até a finalização desta revisão, não foram encontrados artigos científicos que discutam o uso do dispositivo por crianças com limiares auditivos tonais normais diagnosticadas com TEA no país. A temática explorada neste estudo é recente e pouco investigada. Ao discutir os benefícios e os possíveis desafios relacionados ao uso do SMR em crianças com limiares auditivos tonais normais com

diagnóstico de TEA, o presente estudo pode servir como ponto de partida para fomentar discussões sobre essa possibilidade, especialmente no Brasil, onde essa indicação ainda não é uma realidade.

Assim, fonoaudiólogos que atuam na adaptação de DEAA e aqueles que atuam na intervenção junto a crianças com TEA podem considerar avaliações dessa população para a indicação do uso do SMR como tecnologia assistiva. Essas iniciativas podem impulsionar a realização de novas pesquisas, que, a longo prazo, podem contribuir para formulação de políticas públicas voltadas à inclusão e ao bem-estar dessas crianças.

Limitações

Uma das limitações deste estudo é o fato de se tratar de uma revisão integrativa, na qual nem todas as bases de dados disponíveis foram incluídas. Apenas seis estudos apresentaram, separadamente, os resultados do uso do SMR em crianças com TEA, sendo ressaltado pelos autores o número reduzido de participantes. Sugere-se que novas pesquisas sejam conduzidas para investigar, de maneira mais abrangente, os efeitos positivos e negativos do uso do SMR nessa população.

Conclusão

O uso do SMR em crianças ouvintes diagnosticadas com TEA pode oferecer múltiplos benefícios, como uma melhor percepção da fala em ambientes ruidosos, redução do estresse em situações complexas de escuta, aprimoramento na percepção da prosódia emocional, aumento da atenção e da memória auditiva, além da diminuição de comportamentos disruptivos. No entanto, as evidências indicam que esses beneficios não são uniformes em toda a população com TEA. Crianças que necessitam de menor nível de suporte tendem a apresentar maior benefício com o uso do SMR, enquanto aquelas com hiper-responsividade tátil podem não tolerar o uso do receptor pessoal a nível da orelha. Assim, destaca-se a importância de uma avaliação criteriosa e individualizada antes da indicação do uso do SMR para essa população. Ademais, a mensuração dos beneficios do dispositivo pode ser desafiadora, demandando adaptações específicas para atender às necessidades de cada criança.

Referências

- 1. Esturaro GT, Youssef BC, Ficker LB, Deperon TM, Mendes BCA, Novaes BCAC. Adherence to Remote Microphone System at school in children and adolescents with hearing loss. CoDAS. 2022; 34(3): e20200326. Doi: https://doi.org/10.1590/2317-1782/20212020326
- 2. Walker EA, Curran M, Spratford M, Roush P. Remote Microphone Systems for preschool-age children who are hard of hearing: access and utilization. Int J Audiol. 2019; 58(4): 200-7. Doi: https://doi.org/10.1080/14992027.2018.1537523
- 3. Cruz AD, Gagné J, Cruz WM, Isotani S, Gauthier-Cossette L, Jacob RTS. The effects of using hearing aids and a frequency modulated system on listening effort among adolescents with hearing loss. Int J Audiol. 2020; 59(2): 117-23. Doi: https://doi.org/10.1080/14992027.2019.1671992
- 4. Carvalho DS, Pedruzzi CM. Uso do sistema de frequência modulada por escolares com perda auditiva. Dist Comum. 2019; 31(1): 12-21. Doi: https://doi.org/10.23925/2176-2724.2019v31i1p12-21
- 5. Rance G, Chisari D, Saunders K, Rault J. Reducing listening-related stress in school-aged children with autism spectrum disorder. J Autism Dev Disord. 2017; 47: 2010-22. Doi: https://doi.org/10.1007/s10803-017-3114-4
- 6. Benítez-Barrera CR, Angley GP, Tharpe AM. Remote microphone system use at home: impact on caregiver talk. J Speech Lang and Hear Res. 2018; 61(2): 399-409. Doi: https://doi.org/10.1044/2017 JSLHR-H-17-0168
- 7. Thompson EC, Benítez-Bezerra, CR, Angley GP, Woynaroski T, Tharpe AM. Remote microphone system use in the homes of children with hearing loss: impact on caregiver communication and child vocalizations. J Speech Lang Hear Res. 2020; 63(2): 633-42. Doi: https://doi.org/10.1044/2019 JSLHR-19-00197
- 8. Shiels L, Tomlin D, Rance G The assistive benefits of remote microphone technology for normal hearing children with listening difficulties. Ear Hear. 2023; 44(5): 1049-60. Doi: https://doi.org/10.1097/AUD.000000000001351
- 9. Benítez-Barrera CR, Key AP, Murray MM, Retsa C, Ricketts TA, Tharpe AM. Plasticity changes in central auditory systems of school-age children following a brief training with a remote microphone system. Ear Hear. 2023; 44(4): 803-15. Doi: https://doi.org/10.1097/AUD.000000000001329
- 10. Crum R, Chowsilpa S, Kaski D, Giunti P, Bamiou D, Koohi N. Hearing rehabilitation of adults with auditory processing disorder: a systematic review and meta-analysis of current evidence-based interventions. Front Hum Neurosci. 2024; 18: 1406916. Doi: https://doi.org/10.3389/fnhum.2024.1406916
- 11. Schafer EC, Wright S, Anderson C, Jones J, Pitts K, Bryant D et al. Assistive technology evaluations: remote-microphone technology for children with autism spectrum disorder. J Commun Disord. 2016; 64:1-17. Doi: https://doi.org/10.1016/j.jcomdis.2016.08.003
- 12. American Psychiatric Association. Manual Diagnóstico e Estatístico de Transtornos Mentais, 5ª Ed DSM-5 [Internet]. Disponível em: https://www.institutopebioetica.com.br/documentos/manual-diagnostico-e-estatistico-de-transtornosmentais-dsm-5.pdf [acesso 2024 Set 16].

- 13. Stefanelli ACGF, Zanchetta S, Furtado EF. Hiperresponsividade auditiva no transtorno do espectro autista, terminologias e mecanismos fisiológicos envolvidos: revisão sistemática. CoDAS. 2020; 32(3): 20180287. Doi: https://doi.org/10.1590/2317-1782/20192018287
- 14. James P, Schafer E, Wolfe J, Matthews L, Browning S, Oleson J et al. Increased rate of listening difficulties in autistic children. J Commun Dis. 2022; 99:106252. Doi: https://doi.org/10.1016/j.jcomdis.2022.106252
- 15. BRASIL. Lei nº 8069, de 13 de julho de 1990. Dispõe sobre o Estatuto da Criança e do Adolescente e dá outras providências [Internet]. 1990. Disponível em: https://www.planalto.gov.br/ccivil 03/leis/18069.htm [acesso 2024 Set 17]
- 16. Schafer EC, Mathews L, Mehta S, Hill M, Munoz A, Bishop R et al. Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD). J Commun Disord. 2013; 46:30-52. Doi: https://doi.org/10.1016/j.jcomdis.2012.09.002
- 17. Leung JH, Purdy SC, Corballis PM. Improving emotion perception in children with autism spectrum disorder with computer-based training and hearing amplification. 2021; 11(4): 469. Doi: https://doi.org/10.3390/brainsci11040469
- 18. Rance G, Saunders K, Carew P, Johansson M, Tan J. The use of listening devices to ameliorate auditory deficit in children with autism. J Pediatr. 2014; 164(2): 352-57. Doi: https://doi.org/10.1016/j.jpeds.2013.09.041.
- 19. Keller MA, Tharpe AM, Bodfish J. Remote microphone system use in preschool children with autism spectrum disorder and language disorder in the classroom: a pilot efficacy study. Am J Speech Lang Pathol. 2021; 30(1): 226-78. Doi: https://doi.org/10.1044/2020 AJSLP-20-00056
- 20. BRASIL. Portaria nº 1.274, de 25 de junho de 2013. Inclui o Procedimento de Sistma de Frequência Modulada Pessoal (FM) na Tabela de Procedimentos, Medicamentos, Órteses, Próteses e Materiais Especiais (OPM) do Sistema Único de Saúde [internet]. 2013. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt1274_25_06_2013.html [acesso 2024 Nov 06]
- 21. Schafer EC, Gopal KV, Mathews L, Kaiser K, Canale E, Creech A. Verification and validation of remote microphone technology on children and college-age adults who have autism spectrum disorder. J Commun Disord. 2016; 64: 1-17. Doi: https://doi.org/10.1016/j.jcomdis.2016.08.003
- 22. Thompson E, Feldman JI, Valle A, Davis H, Keceli-Kaysili B, Dunham K et al. A comparison of listening skills of autistic and non-autistic youth while using and not using remote microphone systems. J Speech Lang Hear Res. 2023; 66: 4618-34. Doi: https://doi.org/10.1044/2023_JSLHR-22-00720
- 23. Gonçalves LF, Paiva KM, Patatt FSA, Stolz JV, Haas P. Association between autism spectrum disorder and changes in the central auditory processing in children. Rev Assoc Med Bras. 2021; 67(1): 156-162. Doi: https://doi.org/10.1590/1806-9282.67.01.20200588
- 24. Chowdhury R, Sharda M, Foster NEV, Germain E, Tryfon A, Doyle-Thomas K. et al. Auditory pitch perception in autism spectrum disorder is associated with nonverbal abilities. Perception. 2017; 46(11): 1298-1320. Doi: https://doi.org/10.1177/0301006617718715

- 25. Arnett AB, Hudac CM, Deschamps TD, Cairney BE, Gerdts J, Wallace AS et al. Auditory perception is associated with implicit language learning and receptive language ability in autism spectrum disorder. Brain Lang. 2018; 187: 1-8. Doi: https://doi.org/10.1016/j.bandl.2018.09.007
- 26. Wilson WJ, Harper-Hill K, Armstrong R, Downing C, Perrykkad K, Rafter M et al. A preliminary investigation of sound-field amplification as an inclusive classroom adjustment for children with and without Autism Spectrum Disorder. J Commun Disord. 2021; 93:106142. Doi: https://doi.org/10.1016/j.jcomdis.2021.106142
- 27. Scheerer NE, Shafai F, Stevenson RA, Iarocci G. Affective prosody perception and the relation to social competence in autistic and typically developing children. J Abnorm Child Psychol. 2020; 48(7): 965-75. Doi: https://doi.org/10.1007/s10802-020-00644-5
- 28. Williams ZJ, Abdelmessih PG, Key AP, Woynaroski TG. Cortical auditory processing of simple stimuli is altered in autism: a meta-analysis of auditory evoked responses. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6(8): 767-81. Doi: https://doi.org/10.1016/j.bpsc.2020.09.011
- 29. Kamita MK, Silva LAF, Matas CG. Cortical auditory evoked potentials in autism spectrum disorder: a systematic review. CoDAS. 2021; 33(2): e20190207. Doi: https://doi.org/10.1590/2317-1782/20202019207
- 30. Gopal KV, Schafer EC, Mathews L, Nandy R, Beaudoin D, Schadt L et al. Effects of auditory training on eletrophysiological measures in individuals with autism spectrum disorder. J Am Acad Audiol. 2020; 31: 96-104. Doi: https://doi.org/10.3766/jaaa.18063.
- 31. Schafer EC, Gopal KV, Mathews L, Thompson S, Kaiser K, McCullough S et al. Effects of auditory training and remote microphone technology on the behavioral performance of children and young adults who have autism spectrum disorder. J Am Acad Audiol. 2019; 30: 431-43. Doi: https://doi.org/10.3766/jaaa.18062
- 32. Hashimoto R, Okada R, Aoki R, Nakamura M, Ohta H, Itahashi T. Functional alterations of lateral temporal cortex for processing voice prosody in adults with autism spectrum disorder. Cereb Cortex. 2024; 34(9): bhae363. Doi: https://doi.org/10.1093/cercor/bhae363
- 33. Schaffler MD, Middleton LJ, Abdus-Saboor I. Mechanisms of tactile sensory phenotypes in autism: current understanding and future directions for research. Curr Psychiatry Rep. 2019; 21(12): 134. Doi: https://doi.org/10.1007/s11920-019-1122-0
- 34. Espenhahn S, Godfrey KJ, Kaur S, Ross M, Nath N, Dmitrieva O et al. Tactile cortical responses and association with tactile reactivity in young children on the autism spectrum. Mol Autism. 2021; 12:26. Doi: https://doi.org/10.1186/s13229-021-00435-9
- 35. Hirota T, King BH. Autism spectrum disorder: a review. JAMA. 2023; 392(2):157-168. Doi: https://doi.org/10.1001/jama.2022.23661
- 36. Rosen NE, Schiltz HK, Lord C. Teacher-and parent-reported trajectories of maladaptive behaviors among individuals with autism and non-spectrum delays. Autism Res. 2023; 16(1): 174-89. Doi: https://doi.org/10.1002/aur.2854

- 37. Martins JS, Camargo SPH. A adaptação de crianças com autismo na pré-escola: estratégias fundamentadas na Análise do Comportamento Aplicada. Rev Bras Estud Pedagog. 2023; 104: e5014. Doi: https://doi.org/10.24109/2176-6681.rbep.104.5014
- 38. Bone ME, Leppert MLO. Autism spectrum disorder at home and in school. Pediatr Clin N Am. 2024; 71: 223-39. Doi: https://doi.org/10.1016/j.pcl.2024.01.008
- 39. Saltiél DR von, Teixeira AR, Costa SS da. The use of system of Frequency Modulation by children and adolescents from a hearing health care service. Audiol Commun Res. 2021; 26: e2459. Doi: https://doi.org/10.1590/2317-6431-2020-2459
- 40. Fidêncio VLD, Costa CA, Sousa IS, Romão JMFE. Investigation of the knowledge of teachers of regular schools of a region of the Federal District about the frequency modulation system. Audiol Commun Res. 2020; 25: e2278. Doi: https://doi.org/10.1590/2317-6431-2019-2278
- 41. Schafer EC, Traber J, Layden P, Amin A, Sanders K, Bryant D et al. Use of wireless technology for children with auditory processing disorders, attention-deficit hyperactivity disorder, and language disorders. Semin Hear. 2014; 35(3): 193-205. Doi: https://doi.org/10.1055/s-0034-1383504
- 42. Rance G. Wireless technology for children with autism spectrum disorder. Semin Hear. 2014; 35(3): 217-26. Doi: https://doi.org/10.1055/s-0034-1383506

Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional, que permite o uso irrestrito, distribuição e reprodução em qualquer meio, desde que a obra original seja devidamente citada.