Uma proposta para explorar a geometria com o GeoGebra

exploração gráfica e demonstração formal da colinearidade dos baricentros de um polígono

Autores

Palavras-chave:

Atividade em sala de aula, baricentro, colinearidade

Resumo

Este artigo apresenta um exemplo de atividade matemática que professores e alunos podem replicar para gerar uma experiência que se assemelhe à atividade matemática profissional. Estendemos a propriedade: “Considere um triângulo ABC, qualquer linha reta e deixe A‘, B’, C‘ serem as reflexões dos pontos A, B, C na linha reta, então os baricentros dos triângulos ABC, A'BC, AB'C e ABC’ são colineares e a linha de colinearidade é perpendicular à linha reta” e estendemos esse resultado a qualquer quadrilátero. Foi demonstrado que há quatro triângulos adicionais, em um total de oito, cujos baricentros são colineares e que há onze quadriláteros adicionais. Alguns dos experimentos geométricos e numéricos usando o software GeoGebra necessários para estender e demonstrar resultados análogos para o caso de um pentágono são descritos, e os resultados correspondentes para um polígono de n lados são generalizados e demonstrados.

Biografia do Autor

Saulo Mosquera Lopez, Universidad de Nariño

Universidad de Nariño

 

Marlio Paredes, The University of Texas Rio Grande Valley

The University of Texas Rio Grande Valley: Edinburg, Texa

Walter Castro, Universidad de Antioquia

University of Antioquia, Medellín, Colombia

Referências

Academia Brasileira de Ciências [ABC]. (2000). Celso José da Costa. Academia Brasileira de Ciências. https://www.abc.org.br/membro/celso-jose-da-costa/

Altshiller, N. (1952). College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. Dover Publications.

Anhalt, C. O., & Cortez, R. (2015). Mathematical modeling: A structured process. Mathematics Teacher, 108(6), 446-452. https://doi.org/10.5951/mathteacher.108.6.0446

Balacheff, N. (2002). The researcher epistemology: a deadlock from educational research on proof. In F. L. Lin (Ed.), 2002 International conference on mathematics- understanding proving and proving to understand (pp. 23-44). Taipei, Taiwan: NSC and NTNU

Blum, W., & Borromeo, F. R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1, 45-58.

Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education, in Preuve. [On line] Available in: http://www.lettredelapreuve.lt/Newsletter/990708Theme/ ES.html.

Boero, P.; Garuti, R. and Mariotti, M.A. (1996). 'Some dynamic mental processes underlying producing and proving conjectures', Proceedings of PME-XX, Valencia, vol. 2, pp. 121-128.

Bonelo-Ayala, Y.; Benítez-Mojica, D., & Muñoz-Posso, J. (2024). Un nuevo teorema geométrico y su aplicación en la construcción de conjeturas a través de un ambiente de geometría dinámica. Revista Científica,49(1), 44-61. https://doi.org/10.14483/23448350.20680

Brown, S. I., & Walter, M. I. (1983). The art of problem posing. The Franklin Institute Press.

Costa, C. (1982). Imersões minimas completas em R 3 de gênero um e curvatura total finita, Doctoral thesis, IMPA, Rio de Janeiro, Brasil, 1982. (Example of a complete minimal immersion in R 3 of genus one and three ends, Bull. Soc. Bras. Mat., 15 (1984) 47–54.)

Costa, C. (1984). Example of a complete minimal immersion in R^3 of genus one and three embedded ends. Boletim da Sociedade Brasileira de Matemática, 15, 47–54.

Coxeter, H. S. M. (1971). Fundamentos de geometría. Editorial Limusa.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of minds: An organizing principle for mathematics curricula. Journal of Mathematical Behavior, 15, 375-402.

English, L. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41, 161-181. https://doi.org/10.1007/s11858-008-0106-z

Garuti, R.; Boero, P.; Lemut, E.& Mariotti, M. A. (1996). 'Challenging the traditional school approach to theorems: a hypothesis about the cognitive unity of theorems', Proc. of PME-XX, Valencia, vol. 2, pp. 113-120

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM – Mathematics Education, 39(1), 127–135. https://doi.org/10.1007/s11858-006-0004-1

Gökçe, S., & Güner, P. (2022). Dynamics of GeoGebra ecosystem in mathematics education. Education and Information Technologies, 27(3), 4181–4198. https://doi.org/10.1007/s10639-021-10836-1 (Retrieved from https://link.springer.com/article/10.1007/s10639-021-10836-1

Goldenberg, E. P., Cuoco, A., & Mark, J. (1998). A role for geometry in general education. In R. Lehrer, & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 3-44). Mahwh, NJ: Lavrance Erlbaum Associates.

Goldenberg, E. P., Shteingold, N., & Feurzeig, N. (2003). Mathematical habits of mind for young children. In F. K. Lester, & R. I. Charles (Eds.), Teaching mathematics through problem solving: Prekindergarten-Grade 6 (pp. 15-29). Reston, VA: National Council of Teachers of Mathematics.

Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87 (7), 519–524. https://doi.org/10.2307/2321415

Hoffman, D. A., & Meeks III, W. H. (1985). Complete embedded minimal surfaces of finite total curvature. Bulletin of the American Mathematical Society, 12(1), 134-136.

Hoffman, D. A., & Meeks III, W. H. (1990). Embedded Minimal Surfaces of Finite Topology. Annals of Mathematics, 131(1), 1-34.

Isaacs, M. (2001). Geometry for college students (The Brooks/Cole Series in Advanced Mathematics). Brooks/Cole.

Martin, G. E. (1997). Transformation Geometry – An Introduction to Symmetry. New York: Springer-Verlag New York Inc.

Novak, M. M. (2004). Thinking patterns: Fractals and related phenomenon in nature (1st ed.). World Scientific Publishing.

Pujiyanto, F., & Lo, J. (2024). A synthesis on the integration of computer technology in geometry classes, pp (2054-2061) in Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of the forty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Kent State University.

Quarteroni, A. (2022). Modeling Reality with Mathematics. Springer.

Salsa, S. (2016). Partial differential equations in action (3rd ed.). Springer. https://doi.org/10.1007/978-3-319-31238-5

Simon, M.: 1996, 'Beyond Inductive and Deductive Reasoning: The Search for a Sense of Knowing', Educational Studies in Mathematics, 30, 197-210

Schwalbe, D., & Wagon, S. (1999). The Costa Surface. In Mathematica in Education and Research (Vol. 8, pp. 56-63).

Smid, H. J. (2022). Realistic Mathematics Education. In: Theory and Practice. International Studies in the History of Mathematics and its Teaching. Springer. https://doi.org/10.1007/978-3-031-21873-6_8

Stylianides, A. J., & Stylianides, G. J. (2006). Content knowledge for mathematics teaching: The case of reasoning and proving. Proceedings of PME 30, 5, 201–208.

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38, 289–321.

Tao, T. (2006). Solving mathematical problems: A personal perspective. Oxford University Press.

Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 22–44). Reston, VA: National Council of Teachers of Mathematics.

Wayne, D. (1988). Estadística con aplicaciones a las Ciencias Sociales y a la Educación. McGraw-Hill.

Weisstein, Eric W. (2024). Costa Minimal Surface. From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CostaMinimalSurface.html

Zimmermann, W. & Cunningham, S. (1991). What is mathematical visualization? In W.

Zimmermann & S. Cunningham, (Eds.), Visualization in teaching and learning mathematics (pp. 1-8). Washington, DC: Mathematical Association of America.

Downloads

Publicado

2025-06-08

Edição

Seção

Artigos